

Chongqing University of Technology

CL4CTR: A Contrastive Learning Framework for CTR Prediction

Fangye Wang* School of Computer Science Fudan University, Shanghai, China fywang18@fudan.edu.cn

> Hansu Gu[†] Seattle, United States hansug@acm.org

> > Leibniz-Institu

Yingxu Wang* School of Computer Science Fudan University, Shanghai, China yingxuwang20@fudan.edu.cn

Tun Lu*[†] School of Computer Science Fudan University, Shanghai, China lutun@fudan.edu.cn

Ning Gu* School of Computer Science Fudan University, Shanghai, China ninggu@fudan.edu.cn

(WSDM-2023)

code: https://github.com/cl4ctr/cl4ctr

Reported by Zhaoze Gao

Dongsheng Li

Microsoft Research Asia

Shanghai, China

dongsli@microsoft.com

Peng Zhang*

School of Computer Science

Fudan University, Shanghai, China

zhangpeng_@fudan.edu.cn

Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence

1. Introduction

2. Approach

3. Experiments

Introduction

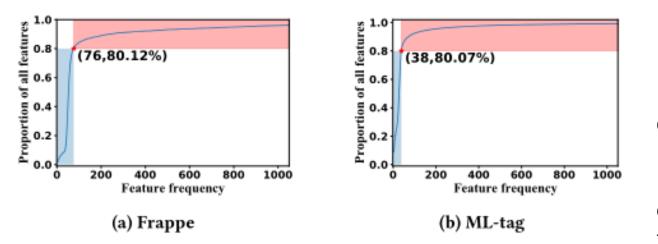


Figure 1: Cumulative distribution of feature frequencies. (38, 80.07%) indicates that features with feature frequencies less than or equal to 38 times account for 80.07% of all features.

In Figure 1, we present the feature cumulative distributions of Frappe and ML-tag datasets.

We can observe a clear "long tail" distribution of feature frequencies, e.g., bottom 80% of features appeared only 38 times or less in the ML-tag dataset.

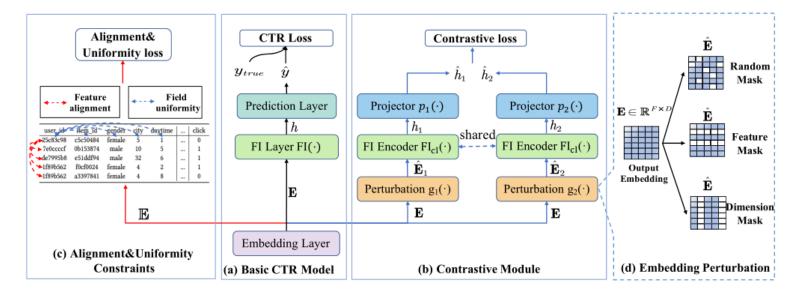
Table 1: An example of multi-field tabular data for CTR prediction. Each row represents an input instance and each column indicates a field. Moreover, each field contains multiple features, but each feature only belongs to one field.

user_id	item_id	gender	city	daytime		click
25c83c98	c5c50484	female	5	1		0
7e0ccccf	0b153874	male	10	5		1
de7995b8	e51ddf94	male	32	6		1
1f89b562	f0cf0024	female	4	2		1
1f89b562	a3397841	female	4	8		0

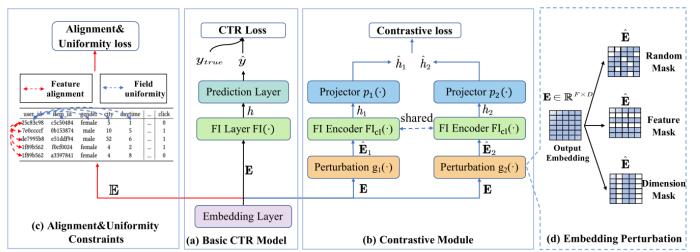
 \mathbf{x}_i represented by a one-hot vector

$$\mathbf{E} = [\mathbf{e}^1; \mathbf{e}^2; ...; \mathbf{e}^F] \in \mathbb{R}^{F \times D}$$

ally, we use $\mathbb{E} = [\mathbb{E}_1, \mathbb{E}_2, ..., \mathbb{E}_F] \in \mathbb{R}^{M \times D}$ to represent all feature representations, where \mathbb{E}_f is the subset representation of the *f*-th field $f \in \{1, 2, ..., F\}$. $|\mathbb{E}_f|$ is the number of features belonging to field *f*, and $M = \sum_{f=1}^F |\mathbb{E}_f|$.



Approach



 $\mathcal{L}_{ctr} = -\frac{1}{N} \sum_{i=1}^{N} (y_i \log (\sigma(\hat{y}_i)) + (1 - y_i) \log (1 - \sigma(\hat{y}_i))).$ (1)

$$\hat{\mathbf{E}} = \mathbf{g}_r(\mathbf{E}) = \mathbf{E} \cdot \mathbf{I}, \mathbf{I} \sim \text{Bernoulli}(p) \in \mathbb{E}^{F \times D}.$$
 (2)

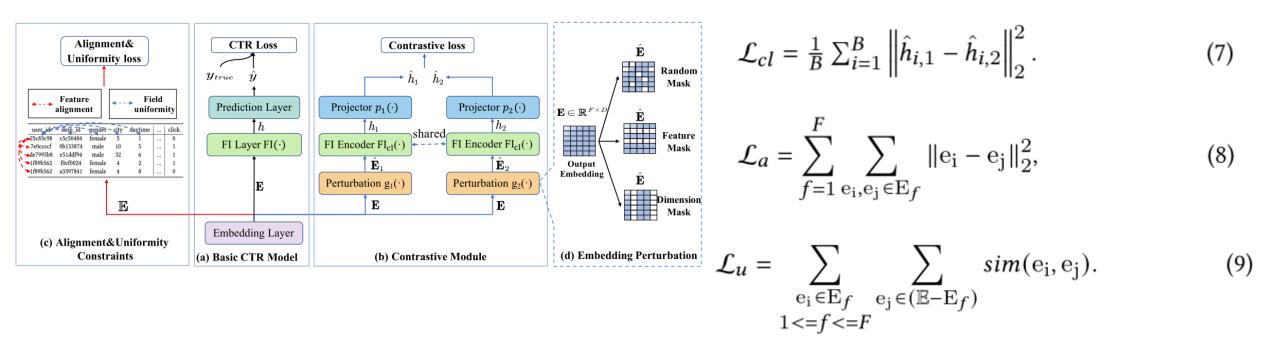
$$\hat{\mathbf{E}} = \mathbf{g}_f(\mathbf{E}) = [\hat{\mathbf{e}}^1; \hat{\mathbf{e}}^2; ...; \hat{\mathbf{e}}^F], \hat{\mathbf{e}}^f = \begin{cases} \mathbf{e}^f, & t \notin \mathcal{T} \\ [mask], & t \in \mathcal{T} \end{cases}, \quad (3)$$

$$\hat{\mathbf{E}} = \mathbf{g}_d(\mathbf{E}) = [d\mathbf{e}^1; d\mathbf{e}^2; ...; d\mathbf{e}^F], d \sim \text{Bernoulli}(p) \in \mathbb{R}^D, \quad (4)$$

$$h_1 = FI_{cl}(\hat{\mathbf{E}}_1), h_2 = FI_{cl}(\hat{\mathbf{E}}_2).$$
 (5)

Approach

$$\hat{h}_1 = p_1(h_1), \hat{h}_2 = p_2(h_2).$$
 (6)



$$\mathcal{L}_{total} = \mathcal{L}_{ctr} + \alpha \cdot \mathcal{L}_{cl} + \beta \cdot (\mathcal{L}_a + \mathcal{L}_u), \tag{10}$$

Table 2: Dataset statistics.

Datasets	Positive	#Training	#Validation	#Test	#Features	#Fields
Frappe	33%	202K	58K	29K	5K	10
ML-tag	33%	1,404K	401K	201K	90K	3
ML-1M	57.5%	800K	100K	100K	10K	5
SafeDriver	3.64%	476K	59K	59K	600	57

Table 3: Overall accuracy comparison in the four datasets. $\triangle AUC$ and $\triangle Logloss$ indicate averaged performance boost compared with DCN-V2. *RelaImp* denotes the relative improvements compared with the strongest baseline. Bold scores are the best performance, while underlined scores are the second best. Improvements over baselines are statistically significant with p<0.01.

Model	Datasets	Fra	ppe	ML	tag	ML	-1M	Safel	Driver	ΔAUC	$\Delta Logloss$
Class	Model	AUC	Logloss	AUC	Logloss	AUC	Logloss	AUC	Logloss	↑	\downarrow
First-order	LR	0.9331	0.2894	0.9348	0.2960	0.7899	0.5417	0.6244	0.1622	-3.35%	0.0572
	FM	0.9746	0.1856	0.9488	0.2595	0.8023	0.5332	0.6301	0.1538	-1.22%	0.0179
Second-Order FwF	FwFM	0.9756	0.1784	0.9582	0.2531	0.8046	0.5281	0.6335	0.1532	-0.74%	0.0131
Second-Order	IFM	0.9771	0.1581	0.9515	0.2497	0.8080	0.5286	0.6353	0.1526	-0.70%	0.0071
	FmFM	0.9801	0.1682	0.9552	0.2493	0.8093	0.5264	0.6378	0.1518	-0.39%	0.0088
	CrossNet	0.9800	0.1658	0.9549	0.2480	0.8114	0.5218	0.6336	0.1517	-0.50%	0.0067
FINT	IPNN	0.9809	0.1604	0.9607	0.2295	0.8110	0.5190	0.6373	0.1521	-0.19%	0.0001
	OPNN	0.9799	0.1683	0.9599	0.2421	0.8112	0.5185	0.6375	0.1519	-0.22%	0.0051
	FINT	0.9807	0.1578	0.9557	0.2430	0.8123	0.5192	0.6349	0.1522	-0.38%	0.0029
	DCAP	0.9801	0.1612	0.9560	0.2428	0.8130	0.5171	0.6390	0.1512	-0.20%	0.0030
	WDL	0.9770	0.1783	0.9599	0.2660	0.8093	0.5226	0.6353	0.1525	-0.44%	0.0110
	DCN	0.9788	0.1621	0.9550	0.2472	0.8125	0.5175	0.6379	0.1514	-0.32%	0.0044
	DeepFM	0.9780	0.1732	0.9586	0.2551	0.8061	0.5259	0.6318	0.1529	-0.69%	0.0117
	xDeepFM	0.9799	0.1750	0.9604	0.2472	0.8082	0.5244	0.6403	0.1515	-0.19%	0.0094
Ensemble	FiBiNET	0.9793	0.1707	0.9548	0.2532	0.8032	0.5313	0.6391	0.1505	-0.56%	0.0113
Liisemble	AutoInt+	0.9783	0.1762	0.9535	0.2562	0.8099	0.5219	0.6310	0.1516	-0.73%	0.0114
	AFN+	0.9786	0.1637	0.9561	0.2468	0.8041	0.5304	0.6374	0.1517	-0.58%	0.0080
	TFNet	0.9798	0.1708	0.9527	0.2551	0.8099	0.5212	0.6387	0.1533	-0.41%	0.0100
	FED	0.9791	0.1606	0.9557	0.2465	0.8128	0.5184	0.6369	0.1534	-0.33%	0.0046
	DCN-V2	0.9803	0.1595	0.9610	0.2330	0.8132	0.5169	0.6406	0.1510	-	-
Ours	$CL4CTR_{FM}$	0.9822	0.1324	0.9621	0.2102	0.8164	0.5136	0.6449	0.1483	0.34%	-0.0140
Ours	RelaImp	0.13%	16.10%	0.11%	8.41%	0.39%	0.64%	0.67%	1.46%	-	-

Table 4: Compatibility study of CL4CTR.

Model	Fra	ppe	ML	-1M	SafeDriver	
Model	AUC	Logloss	AUC	Logloss	AUC	Logloss
FM	0.9746	0.1856	0.8023	0.5332	0.6244	0.1622
$CL4CTR_{FM}$	0.9822	0.1324	0.8164	0.5136	0.6449	0.1483
FwFM	0.9756	0.1784	0.8046	0.5281	0.6335	0.1532
$CL4CTR_{FwFM}$	0.9815	0.1532	0.8118	0.5192	0.6421	0.1487
DeepFM	0.9780	0.1732	0.8061	0.5259	0.6318	0.1529
CL4CTR _{DeepFM}	0.9813	0.1677	0.8113	0.5194	0.6381	0.1504
Autoint+	0.9783	0.1762	0.8099	0.5219	0.6310	0.1516
CL4CTR _{Autoint+}	0.9802	0.1684	0.8122	0.5174	0.6402	0.1506
DCN	0.9788	0.1621	0.8125	0.5170	0.6379	0.1514
CL4CTR _{DCN}	0.9808	0.1566	0.8164	0.5125	0.6415	0.1494
DCN-V2	0.9803	0.1595	0.8132	0.5169	0.6406	0.1510
$CL4CTR_{DCN-V2}$	0.9812	0.1549	0.8144	0.5153	0.6411	0.1497

ATA Advanced Technique of Artificial Intelligence

Table 5: Impact of data augmentation methods.

Base	Variants	Fra	ppe	SafeDriver		
model	variants	AUC	Logloss	AUC	Logloss	
	Base	0.9746	0.1856	0.6244	0.1622	
FM	Random	0.9822	0.1324	0.6449	0.1483	
L'INI	Feature	0.9814	0.1328	0.6303	0.1539	
	Dimension	0.9816	0.1334	0.6404	0.1505	
	Base	0.9756	0.1784	0.6335	0.1532	
FwFM	Random	0.9815	0.1532	0.6421	0.1487	
LMLM	Feature	0.9822	0.1513	0.6384	0.1483	
	Dimension	0.9811	0.1465	0.6455	0.1508	
	Base	0.9780	0.1817	0.6318	0.1529	
DeenEM	Random	0.9813	0.1677	0.6381	0.1504	
DeepFM	Feature	0.9798	0.1750	0.6341	0.1522	
	Dimension	0.9804	0.1697	0.6353	0.1514	
	Base	0.9788	0.1611	0.6379	0.1514	
DCN	Random	0.9808	0.1566	0.6415	0.1494	
DCN	Feature	0.9804	0.1601	0.6409	0.1508	
	Dimension	0.9803	0.1573	0.6411	0.1504	

Table 6: Impact of different FI encoder $FI_{cl}(\cdot)$.

Base	FI	Ero	nna	MI	-1M
			ppe		
model	Encoder	AUC	Logloss	AUC	Logloss
	Base	0.9746	0.1856	0.8023	0.5332
FM	DNN	0.9804	0.1404	0.8177	0.5123
FINI	Transformer	0.9822	0.1324	0.8164	0.5136
	CrossNet2	0.9801	0.1438	0.8170	0.5143
	Base	0.9756	0.1784	0.8046	0.5281
FwFM	DNN	0.9809	0.1504	0.8064	0.5264
	Transformer	0.9815	0.1532	0.8118	0.5192
	CrossNet2	0.9822	0.1675	0.8102	0.5231
	Base	0.9780	0.1732	0.8061	0.5259
DeepEM	DNN	0.9804	0.1710	0.8101	0.5206
DeepFM	Transformer	0.9813	0.1704	0.8113	0.5194
	CrossNet2	0.9791	0.1719	0.8109	0.5202
	Base	0.9803	0.1595	0.8132	0.5169
DCN V2	DNN	0.9807	0.1573	0.8151	0.5144
DCN-V2	Transformer	0.9812	0.1549	0.8144	0.5153
	CrossNet2	0.9804	0.1588	0.8141	0.5155

Table 7: Impact of SSL signals in the loss function.

Madal	Less Provetiers	Fra	ppe	ML	-1M
Model	Loss Function	AUC	Logloss	AUC	Logloss
	\mathcal{L}_{ctr}	0.9746	0.1856	0.8023	0.5332
FM	+ \mathcal{L}_{cl}	0.9794	0.1485	0.8102	0.5230
L'IAI	+ $(\mathcal{L}_a + \mathcal{L}_u)$	0.9812	0.1455	0.8139	0.5175
	+ \mathcal{L}_{cl} + (\mathcal{L}_a + \mathcal{L}_u)	0.9822	0.1324	0.8164	0.5136
	\mathcal{L}_{ctr}	0.9756	0.1784	0.8046	0.5281
FwFM	+ \mathcal{L}_{cl}	0.9785	0.1553	0.8109	0.5229
LMLM	+ $(\mathcal{L}_a + \mathcal{L}_u)$	0.9812	0.1536	0.8098	0.5252
	+ \mathcal{L}_{cl} + (\mathcal{L}_a + \mathcal{L}_u)	0.9815	0.1532	0.8118	0.5192
	\mathcal{L}_{ctr}	0.9780	0.1817	0.8061	0.5259
DeepEM	+ \mathcal{L}_{cl}	0.9794	0.1701	0.8094	0.5235
DeepFM	$+ (\mathcal{L}_a + \mathcal{L}_u)$	0.9784	0.1791	0.8103	0.5214
	+ \mathcal{L}_{cl} + (\mathcal{L}_a + \mathcal{L}_u)	0.9813	0.1677	0.8113	0.5194
	\mathcal{L}_{ctr}	0.9788	0.1611	0.8125	0.5170
DCN	+ \mathcal{L}_{cl}	0.9802	0.1585	0.8138	0.5150
DCN	+ $(\mathcal{L}_a + \mathcal{L}_u)$	0.9792	0.1600	0.8129	0.5188
	+ \mathcal{L}_{cl} + (\mathcal{L}_a + \mathcal{L}_u)	0.9808	0.1566	0.8164	0.5125

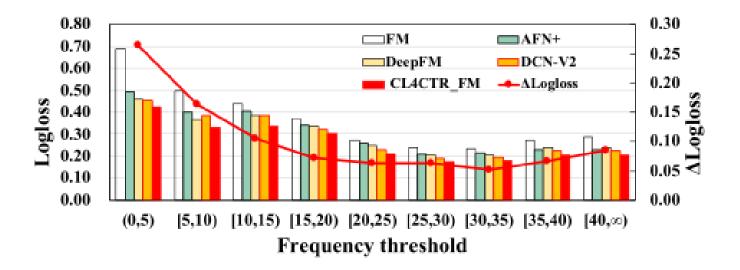


Figure 3: Improvement vs. feature frequency.

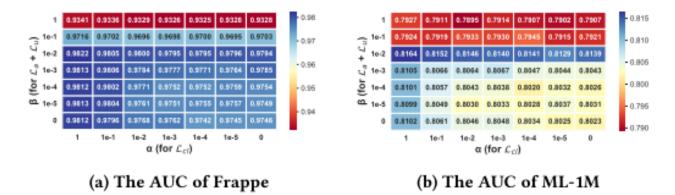


Figure 4: Performance of $CL4CTR_{FM}$ w.r.t. different weights assigned to three SSL signals: α for \mathcal{L}_c , β for \mathcal{L}_a and \mathcal{L}_u .

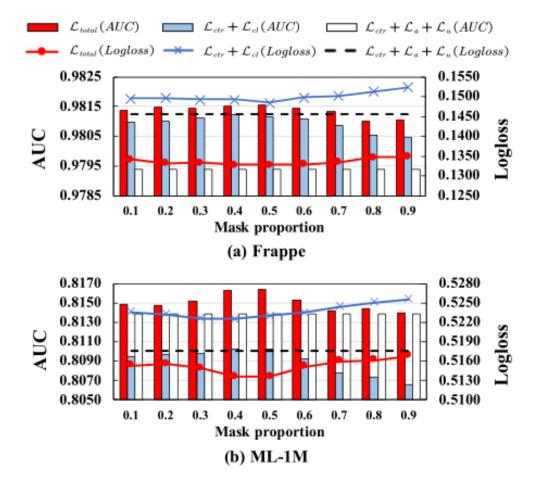


Figure 5: Impact of random mask proportion.

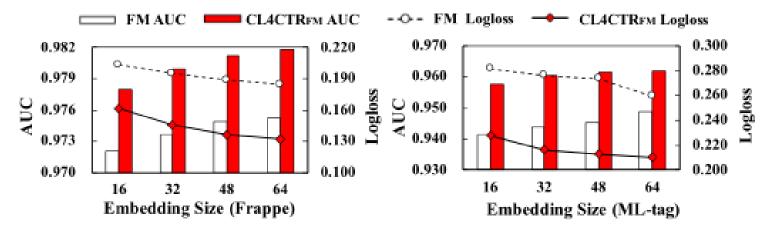


Figure 6: Impact of embedding size on FM and CL4CTR_{FM}.

Thank you!